skip to main content


Search for: All records

Creators/Authors contains: "González, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Soft materials are of major interest for biomechanics applications due to their high deformability and susceptibility to experience damage events under different loading scenarios. The present study is concerned with modelling damage evolution processes in these nonlinear materials whose structural responses are prone to locking when low-order kinematic interpolation is employed in the context of nonlinear Finite Element schemes. For this reason, a pair of gradient-enhanced continuum damage schemes are proposed with the aim of tackling mechanical failure problems in applications that exhibit shear and volumetric locking. In particular, we present the consistent formulation and the assessment of the corresponding performance of (i) a mixed displacement-enhanced assumed strain employing a total Lagrangian formulation, and (ii) a three-field mixed displacement-pressure-Jacobian formulation. The novel and formulations are consistently derived and numerically implemented, providing a satisfactory agreement with respect to built-in elements handling the treatment of shear and volumetric locking, respectively, in conjunction to the modelling damage phenomena via the use of a penalty-based gradient-enhanced formulation. This performance is examined via several numerical applications. Furthermore, the final example justifies the need for a formulation combining both mixed FE approaches to simulate problems encompassing both locking issues (shear and volumetric locking), which can be performed using a combination of the and herein proposed.

     
    more » « less
  2. Ingenuity for El Ingenio is a case study to address the challenges that marginalized communities in Puerto Rico suffer, mostly from natural hazards, due to settlements in high-risk areas and deteriorating infrastructure. The case study was developed by an interdisciplinary group of students from the University of Puerto Rico - Río Piedras School of Architecture and students from the Department of Civil Engineering and Surveying and the Department of Electrical Engineering at the University of Puerto Rico - Mayagüez, as part of the course “Design-Build Project Delivery” in the RISE-UP program. The project contemplated spaces for a family/group of four people, in the neighborhood Ingenio in Toa Baja, Puerto Rico, which is a community exposed to multiple natural hazards including hurricanes, earthquakes, and floods. The design parameters for the project included a set budget of $40,000 USD for the construction of four temporary housing units, requirement to withstand the impact of multiple natural hazards, as well as being simple to build and be able to operate independent to power and water grids during an emergency. The resulting design provides 270 sq ft. of usable space and can partially function off the grid due to solar energy generation and water storage. Local materials were implemented, and a manual of components and suggested construction methods was developed. This experience showcases the benefits that an interdisciplinary-integrated approach to infrastructure design can have on producing rapid and efficient design solutions to challenges caused by natural hazards, in resilient and sustainable ways. 
    more » « less
  3. Abstract The relationship between structure and function is a major constituent of the rules of life. Structures and functions occur across all levels of biological organization. Current efforts to integrate conceptual frameworks and approaches to address new and old questions promise to allow a more holistic and robust understanding of how different biological functions are achieved across levels of biological organization. Here, we provide unifying and generalizable definitions of both structure and function that can be applied across all levels of biological organization. However, we find differences in the nature of structures at the organismal level and below as compared to above the level of the organism. We term these intrinsic and emergent structures, respectively. Intrinsic structures are directly under selection, contributing to the overall performance (fitness) of the individual organism. Emergent structures involve interactions among aggregations of organisms and are not directly under selection. Given this distinction, we argue that while the functions of many intrinsic structures remain unknown, functions of emergent structures are the result of the aggregate of processes of individual organisms. We then provide a detailed and unified framework of the structure–function relationship for intrinsic structures to explore how their unknown functions can be defined. We provide examples of how these scalable definitions applied to intrinsic structures provide a framework to address questions on structure–function relationships that can be approached simultaneously from all subdisciplines of biology. We propose that this will produce a more holistic and robust understanding of how different biological functions are achieved across levels of biological organization. 
    more » « less
  4. In this article the recent developments of the open-source OpenMolcas chemistry software environment, since spring 2020, are described, with the main focus on novel functionalities that are accessible in the stable branch of the package and/or via interfaces with other packages. These community developments span a wide range of topics in computational chemistry, and are presented in thematic sections associated with electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report represents a useful summary of these developments, and it offers a solid overview of the chemical phenomena and processes that OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. null (Ed.)
  6. ABSTRACT

    HIP 9618 (HD 12572, TOI-1471, TIC 306263608) is a bright (G = 9.0 mag) solar analogue. TESS photometry revealed the star to have two candidate planets with radii of 3.9 ± 0.044 R⊕ (HIP 9618 b) and 3.343 ± 0.039 R⊕ (HIP 9618 c). While the 20.77291 d period of HIP 9618 b was measured unambiguously, HIP 9618 c showed only two transits separated by a 680-d gap in the time series, leaving many possibilities for the period. To solve this issue, CHEOPS performed targeted photometry of period aliases to attempt to recover the true period of planet c, and successfully determined the true period to be 52.56349 d. High-resolution spectroscopy with HARPS-N, SOPHIE, and CAFE revealed a mass of 10.0 ± 3.1M⊕ for HIP 9618 b, which, according to our interior structure models, corresponds to a $6.8\pm 1.4~{{\ \rm per\ cent}}$ gas fraction. HIP 9618 c appears to have a lower mass than HIP 9618 b, with a 3-sigma upper limit of <18M⊕. Follow-up and archival RV measurements also reveal a clear long-term trend which, when combined with imaging and astrometric information, reveal a low-mass companion ($0.08^{+0.12}_{-0.05} M_\odot$) orbiting at $26.0^{+19.0}_{-11.0}$ au. This detection makes HIP 9618 one of only five bright (K < 8 mag) transiting multiplanet systems known to host a planet with P > 50 d, opening the door for the atmospheric characterization of warm (Teq < 750 K) sub-Neptunes.

     
    more » « less
  7. null (Ed.)
    Routine DNA barcoding with the chloroplast gene tufA identified novel records of an unknown and denuded (i.e. lacking branchlets) Caulerpa species previously reported from the Florida Middle Grounds. tufA barcoding not only confirmed the matching molecular identity of this taxon with several newly collected denuded specimens from shallow habitats of the Yucatán shelf, but also with a set of plumose specimens previously collected from mesophotic depths of the West Florida shelf and recorded as Caulerpa sertularioides. Sequencing of two additional, faster-evolving DNA markers, i.e. nuclear ITS and the newly tested chloroplast-encoded rpoA, each confirmed conspecificity of the above morphotypes and the molecular separation of the new taxon from C. sertularioides and filiform species found in the region, namely C. cupressoides f. denudata and C. fastigiata. In light of our sequencing results and review of the early taxonomic history of filiform Caulerpa, we propose the description of Caulerpa wysorii sp. nov. for this new species that exhibits two distinct morphotypes in currently available collections, i.e. filiform or plumose assimilators. We also subsume C. tongaensis within the broadly distributed C. fastigiata, whose lectotype is also designated herein. In addition to Caulerpa wysorii sp. nov., we discovered yet another unknown denuded species from the Campeche Banks represented by a single specimen thus far. 
    more » « less